Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS One ; 18(5): e0285861, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2315260

RESUMEN

A novel multiplex loop-mediated isothermal amplification (LAMP) method combined with DNA chromatography was developed for the simultaneous detection of three important respiratory disease-causing viruses: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus, and influenza B virus. Amplification was performed at a constant temperature, and a positive result was confirmed by a visible colored band. An in-house drying protocol with trehalose was used to prepare the dried format multiplex LAMP test. Using this dried multiplex LAMP test, the analytical sensitivity was determined to be 100 copies for each viral target and 100-1000 copies for the simultaneous detection of mixed targets. The multiplex LAMP system was validated using clinical COVID-19 specimens and compared with the real-time qRT-PCR method as a reference test. The determined sensitivity of the multiplex LAMP system for SARS-CoV-2 was 71% (95% CI: 0.62-0.79) for cycle threshold (Ct) ≤ 35 samples and 61% (95% CI: 0.53-0.69) for Ct ≤40 samples. The specificity was 99% (95%CI: 0.92-1.00) for Ct ≤35 samples and 100% (95%CI: 0.92-1.00) for the Ct ≤40 samples. The developed simple, rapid, low-cost, and laboratory-free multiplex LAMP system for the two major important respiratory viral diseases, COVID-19 and influenza, is a promising field-deployable diagnosis tool for the possible future 'twindemic, ' especially in resource-limited settings.


Asunto(s)
COVID-19 , Orthomyxoviridae , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN , ARN Viral/análisis
2.
PLoS Pathog ; 18(10): e1010891, 2022 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2112643

RESUMEN

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Humanos , Hemaglutininas , Anticuerpos Antivirales , Vacunación , Pruebas de Inhibición de Hemaglutinación , Vacunas de Productos Inactivados , Macaca fascicularis , Virión , Inmunoglobulina A , Inmunoglobulina G , Nucleoproteínas
3.
Biochem Biophys Res Commun ; 614: 207-212, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1814155

RESUMEN

Simple, highly sensitive detection technologies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial for the effective implementation of public health policies. We used the systematic evolution of ligands by exponential enrichment with a modified DNA library, including a base-appended base (uracil with a guanine base at its fifth position), to create an aptamer with a high affinity for the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. The aptamer had a dissociation constant of 1.2 and < 1 nM for the RBD and spike trimer, respectively. Furthermore, enzyme-linked aptamer assays confirmed that the aptamer binds to isolated authentic SARS-CoV-2 wild-type and B.1.617.2 (delta variant). The binding signal was larger that of commercially available anti-SARS-CoV-2 RBD antibody. Thus, this aptamer as a sensing element will enable the highly sensitive detection of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , ADN/metabolismo , Humanos , Oligonucleótidos/metabolismo , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
4.
Viruses ; 13(11)2021 10 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1481022

RESUMEN

Systemic symptoms have often been observed in patients with coronavirus disease 2019 (COVID-19) in addition to pneumonia, however, the details are still unclear due to the lack of an appropriate animal model. In this study, we investigated and compared blood coagulation abnormalities and tissue damage between male Syrian hamsters of 9 (young) and over 36 (aged) weeks old after intranasal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite similar levels of viral replication and inflammatory responses in the lungs of both age groups, aged but not young hamsters showed significant prolongation of prothrombin time and prominent acute kidney damage. Moreover, aged hamsters demonstrated increased intravascular coagulation time-dependently in the lungs, suggesting that consumption of coagulation factors causes prothrombin time prolongation. Furthermore, proximal urinary tract damage and mesangial matrix expansion were observed in the kidneys of the aged hamsters at early and later disease stages, respectively. Given that the severity and mortality of COVID-19 are higher in elderly human patients, the effect of aging on pathogenesis needs to be understood and should be considered for the selection of animal models. We, thus, propose that the aged hamster is a good small animal model for COVID-19 research.


Asunto(s)
Lesión Renal Aguda/patología , Coagulación Sanguínea , COVID-19/complicaciones , COVID-19/metabolismo , COVID-19/virología , SARS-CoV-2 , Sistema Urinario/patología , Lesión Renal Aguda/virología , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus/virología , Transcriptoma , Sistema Urinario/virología , Células Vero , Carga Viral , Replicación Viral
5.
Viruses ; 13(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1273516

RESUMEN

Despite seasonal influenza vaccines having been routinely used for many decades, influenza A virus continues to pose a global threat to humans, causing high morbidity and mortality each year. The effectiveness of the vaccine is largely dependent on how well matched the vaccine strains are with the circulating influenza virus strains. Furthermore, low vaccine efficacy in naïve populations such as young children, or in the elderly, who possess weakened immune systems, indicates that influenza vaccines need to be more personalized to provide broader community protection. Advances in both vaccine technologies and our understanding of influenza virus infection and immunity have led to the design of a variety of alternate vaccine strategies to extend population protection against influenza, some of which are now in use. In this review, we summarize the progress in the field of influenza vaccines, including the advantages and disadvantages of different strategies, and discuss future prospects. We also highlight some of the challenges to be faced in the ongoing effort to control influenza through vaccination.


Asunto(s)
Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Medicina de Precisión , Adyuvantes Inmunológicos , Toma de Decisiones Clínicas , Manejo de la Enfermedad , Humanos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/clasificación , Gripe Humana/epidemiología , Medicina de Precisión/métodos , Vigilancia en Salud Pública , Investigación , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA